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Abstract

(ASD) using ML.

cytoskeleton processes were highlighted for SCZ.

ASD and SCZ.

Background: Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic
datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder

Methods: In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing
(WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further
demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are
mutated concurrently in affected individuals and are central to each disease (i.e, ASD vs. SCZ “hub” genes).

Results: In summary, after correcting for population structure, we found that SCZ and ASD cases could be
successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through
bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same
condition ("hub” genes) belong to specific pathways. Several themes were found to be associated with ASD,
including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid
metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/

Conclusions: Our manuscript introduces a novel comparative approach for studying the genetic architecture of
genetically related diseases with complex inheritance and highlights genetic similarities and differences between

Keywords: Genomic, Machine learning, Unsupervised clustering, Autism spectrum disorder, Schizophrenia

Background

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by significant impairments in social
communication and interaction, as well as by abnormal re-
petitive behaviors, interests, or activities (Diagnostic and
Statistical Manual of Mental Disorders (DSM)-5, 2013). The
heritability of ASD has been estimated to be around 70-
90%, suggesting that genetic factors contribute largely to the
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ASD phenotype [1]. Genome-wide sequencing analyses have
revealed that a large number (100 to 1000) of susceptibility
genes are associated with ASD [2—4]. Recent studies showed
that de novo mutations (DNM) have a significant role in
ASD [3, 5-7], and estimated that around 30% of simplex
ASD cases result from DNMs [3].

Schizophrenia (SCZ) is a neuropsychiatric disorder char-
acterized by distorted perception, emotion, and cognition. It
can also be characterized by negative symptoms, such as an-
hedonia, blunting of affect, or poverty of speech and thought
(DSM-5, 2013). Similar to ASD, SCZ has high heritability,
estimated to be around 80-85%, yet, much of it is not fully
understood [8]. Recent studies have highlighted a role for
common single nucleotide polymorphisms (SNPs) in SCZ
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[9-12]. Moreover, like ASD, SCZ cases are enriched in de
novo single nucleotide variants (SNVs) [13, 14].

In summary, both SCZ and ASD clearly have a strong
genetic component in their etiopathology; however, link-
age analysis and genome-wide associations have had lim-
ited success and replicability in identifying significant
genes in these complex disorders [15-19]. The lack of
success is thought to be due to ASD and SCZ having
polygenic and multifactorial inheritance where, unlike
Mendelian disorders, each susceptibility gene increases
one’s predisposition to the disease in combination with
other genes. The involvement of many genes (in differ-
ent combinations for each patient) and environmental
factors makes it difficult to identify the specific genetic
risk factors predisposing a given patient to ASD or SCZ.

Machine learning (ML) or statistical learning (SL) al-
gorithms aim to learn and understand complex high-
dimensional data. These learning algorithms can be di-
vided into two broad categories: supervised learning and
unsupervised learning [20-22]. Our group recently ap-
plied supervised ML to rare, predicted functional vari-
ants from whole-exome sequencing (WES) data of a
SCZ case-control dataset (# = 5090). 70% of the data was
used to train the ML algorithm and 30% (n=1526) to
evaluate its performance, showing encouraging results
(86% accuracy, AUC: 0.95) [23]. Studies based on super-
vised learning, like the one just mentioned, are focused
on learning from input-to-output labeled data where a
model is trained to learn the best function or map from
input variables of data instances to their labels. In con-
trast, unsupervised learning algorithms seek to discover
useful underlying patterns in a dataset without relying
on labels. For instance, a recent publication using un-
supervised learning illustrated how WES data could be
used to identify patient subtypes of patients with major
depressive disorder (MDD) [24].

Several studies have shown the effectiveness of su-
pervised learning methods in distinguishing between
overlapping medical conditions. For example, they
have been used to distinguish between age-related
cognitive decline and dementias based on neurocogni-
tive tests [25]. Further, they have also been success-
fully used to distinguish and study different cancer
types based on gene expressions [26, 27] and DNA
methylation patterns [28].

Overlapping genetic factors conferring risk to both
SCZ and ASD have been identified suggesting shared
biological pathways [29]. Our hypothesis is that ML
methods can help us advance our understanding of the
genomic architecture of ASD and SCZ by contrasting
exome data from patients with these two conditions.
Analyzing data of individuals affected with two different
conditions with high heritability, complex inheritance,
and evidence for overlapping genetic features using
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supervised learning may have some advantages. For ex-
ample, in our above-mentioned SCZ case-control study,
some unaffected individuals may also be genetically at
high risk for SCZ but not have been exposed to adequate
environmental risk factors, complicating the analysis.
When comparing individuals with ASD and SCZ, given
they are all affected, this is not an issue anymore. The
first objective of our study is to explore whether SCZ
and ASD patients can be distinguished based solely on
supervised learning analysis of the genetic information
from their WES data. Our second objective is to analyze
the genetic features prioritized by the supervised learn-
ing algorithm, using unsupervised clustering, to identify
central hub genes in the genetic architecture for SCZ
and ASD.

Materials

Whole-exome data sources and annotation

Schizophrenia WES data (dbGaP trios)

This dataset is available in the dbGaP (study
phs000687.v1.pl). The samples in this dataset were col-
lected from the University Hospital Alexander in Sofia,
Bulgaria. Individuals with intellectual disability were ex-
cluded. Unrelated families with parents who did not
have schizophrenia participated in the original study.
Overall, 598 trios were included in our analysis.

Autism WES data (NDAR trios)

The data for 2392 families with ASD were obtained from
NDAR (doi: https://doi.org/10.15154/1169318; doi:
https://doi.org/10.15154/1169195). The original sequen-
cing data is of families in the Simons Simplex Collection
[30]. The proband had to: 1) be at least 36 months of
age, 2) have a nonverbal IQ or nonverbal mental age of
24 months for children aged between 36 and 83 months,
or 30 months for children aged 84 months and above, 3)
not have a known genetic disorder, and 4) not have ex-
tensive birth complications such as prematurity and
cerebral palsy. Moreover, one of the requirements for
participation in the study was that both biological par-
ents had to be willing to participate and that they should
not have ASD.

Summary of variant filtering criteria
Filtering was run through the rows of variants in each
dataset so that only variants that met the following cri-
teria were included in our analysis.

We selected for coding variant types annotated as
“frameshift_deletion”, “frameshift_insertion”, “frameshift_
substitution”, “nonsynonymous_SNV”, “stopgain”, or “sto-
ploss,” and variant functional types annotated as “exonic”,
“exonic_splicing”, or “intronic_splicing.” Furthermore, the
selected variants had a minor allele frequency (MAF)
equal to or less than 0.01. Lastly, on a per-individual basis,
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for variants to be called they needed to have a minimum
number of 4 variant reads, a minimum depth of sequen-
cing of 10 reads, and a minimum genotype quality of 90.

The selected variants were then arranged in a tabular
format, where each row corresponded to a different indi-
vidual. The clinical status (ASD vs SCZ) for each indi-
vidual was denoted in the first column, while the
variants meeting our criteria for each individual were de-
noted as separate columns, with values of 0, 1 or 2 in
the corresponding cells indicating wildtype, heterozy-
gous, and homozygous status for each selected variant
for the respective individual.

Methods

Population stratification adjustment

A major confounder in the analysis of cross-origin data-
sets like the ones we are using is the population stratifica-
tion due to differences in ancestry. Due to population
structure, the ML algorithm could focus on SNVs unre-
lated to the disease, which are specific to the population
from which the affected individuals originate. Our focus-
ing on rare variants minimizes the impact of differences in
population structure between the two datasets. However,
to formally address this possibility, we implemented a
well-established  population stratification  correction
method for genome-wide data [Eigenstrat] [31]. Eigenstrat
is based on the adjustment of the original SNVs data
based on any population structure discovered using prin-
cipal components analysis. We applied this approach to
adjust for population differences between the ASD
(NDAR trios) and the SCZ (dbGaP trios) datasets. To re-
move the population structure from our dataset, we used
the top 4 axes of variation from Eigenstrat that were sig-
nificant. This is expected to account for most of the popu-
lation structure. Then we regressed each SNV or feature
of our dataset on the four axes of variation and took its re-
siduals to be the adjusted SNV values of our adjusted
dataset that corrects for population structure. We adjusted
the phenotype values in a similar fashion. Lastly, each ad-
justed genotype and phenotype value was rounded to the
nearest whole number to estimate the nearest adjusted
genotype and phenotype. As a result, the original binary
class of ASD and SCZ was converted to integer values,
which we then capped to a range of — 4 to + 4 as only one
adjusted instance fell outside this range.

This dataset has the adjusted genotype values of each
SNV arranged in columns for each row of patient sam-
ple and will be referred to as the SNV-based data. We
also converted the adjusted SNVs datasets into “gene-
level SNV counts” by summing together all adjusted
SNVs values located in the same gene of any given pa-
tient. This dataset has the sums for each gene arranged
in columns for each row of patient sample and is re-
ferred to as the gene-based data.
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Algorithm selection

Many powerful ML algorithms render themselves unin-
terpretable, making it difficult to understand their
decision-making process. Trying to balance interpret-
ability with model performance, we used a more inter-
pretable state of the art ML algorithm: regularized
gradient boosted machine (GBM) (XGBoost implemen-
tation) [32], which we also demonstrated as an effective
algorithm in our previous study [23].

Regularized GBM is state of the art and has been
proved successful in a wide range of tasks. Its highly reg-
ularized methodology of feature selection and ranking of
features based on their relative importance in making
accurate predictions made it a great candidate for our
study. Of note, a regularized algorithm penalizes itself
for complexity, and thus uses only features that are rele-
vant and brings more intelligence to its architecture than
complexity. In our study, this means using only genes
that have high predictive power in combination with
other genes, and discard the less informative ones,
thereby reducing the number of candidate genes.

Training the boosted regression trees models

Since the population structure adjusted datasets follow-
ing the Eigenstrat methodology have continuous pheno-
type labels, we trained the boosted regression trees
variant of GBM to predict the continuous label values of
ASD and SCZ cases based on the SNV-based data and
the gene-based data. Since the focus of this analysis is to
classify patients as either ASD or SCZ, we framed the re-
gression problem as a classification to allow for meas-
urement of the prediction accuracy. We performed the
following mapping of the continuous predicted value to
the binary classes. Since the adjusted phenotype values
for ASD cases all had values of 1 or greater, and the ad-
justed phenotype values for SCZ all had values of -1 or
lower, any prediction above 0 was mapped to a predic-
tion of ASD class and any prediction below 0 was
mapped to a prediction of SCZ class.

Given our ASD and SCZ datasets contain an unbal-
anced number of individuals, we decided to use a bal-
anced approach by selecting an equal number of ASD
and SCZ cases. This change ensured that accuracy
would be a good measure of model performance. To this
end, the first 598 samples were selected from the ASD
cases to balance the two datasets. We trained and fine-
tuned the boosted regression trees using 70% of the data
(419 ASD vs. 419 SCZ samples) as a training and valid-
ation dataset. We then inspected the best performing
model on the remaining, previously unseen, 30% of the
data (test dataset; 179 ASD vs. 179 SCZ samples). The
SNVs used by the SNV-based model were extracted and
mapped to their corresponding genes to get the list of
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the most important genes. The most important genes
used by the best gene-based model were also extracted.
In addition to the 70:30 split for evaluation, we also
assessed the performance of a five-fold cross-validation
using the whole dataset (598 ASD vs. 598 SCZ samples)
to provide a comprehensive validation of the algorithm.

Identification of genes central to ASD and SCZ

To find which genes are important to SCZ or ASD, and
which of these genes appear to be mutated concurrently
in affected individuals, a novel unsupervised clustering
analysis was performed. The genes identified by the 1)
SNV-based algorithm and 2) gene-based algorithm were
compared, and the ones identified by both algorithms
(the overlapping ML list of genes) were used for the sub-
sequent analyses.

To identify the (networks of) genes important to SCZ,
hierarchical clustering was performed for the overlapping
ML list of genes, using only the SCZ cases and the gene-
based dataset. The Jaccard coefficient was used as the simi-
larity measure for clustering the genes. The Jaccard coeffi-
cient between any two genes was calculated as the number
of shared SCZ cases having an SNV count value greater
than 0 in both genes divided by the number of SCZ cases
having an SNV count value greater than 0 in either gene.
Gene distances were derived as one minus the Jaccard coef-
ficient. Hierarchical clustering is performed based on the
distances using Ward’s linkage method [33], which recur-
sively joins elements and/or clusters to form new clusters
while minimizing the increase in the variance of the new
cluster. Lastly, a dendrogram showing clusters of similar
genes based on the distance metric and linkage method
was created. To determine the most important cluster of
genes for SCZ, we applied the following approach.

For each gene cluster identified, the number of genes
was counted (a). Similarly, the number of unique SCZ
cases carrying a genetic change in at least one of these
genes was determined (b). This number (b) represents
the number of SCZ cases having a genetic variation in at
least one of the genes in a given cluster. Then, by divid-
ing (b) over (a) a ratio, specific for each cluster, was cal-
culated. The cluster with the highest ratio was selected

Table 1 Performance of different approaches (algorithms) on

test data

Method  Accuracy Precision Recall NIR P-value (Acc>  95% Cl
NIR)

SNV- 0.86 073 098 063 <497e-22 (0.82,

based 0.89)

Gene- 0.88 0.80 096 058 <3.09e-36 (0.85,

based 0.92)

The performance between the two algorithms trained to distinguish ASD cases
from SCZ cases is measured on a previously unseen test dataset. The accuracy
is a measure of the number of correctly predicted samples divided by the
total number of samples

Acc Accuracy, NIR No information rate, C/ Confidence interval
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Table 2 Performance of SNV and Gene-based approaches using
five-fold cross validation

Method Accuracy Precision Recall NIR  P-value (Acc>  95% Cl
NIR)

SNV- 0.88 0.78 097 059 <22e-16 (0.86,

based 0.90)

Gene- 0.88 0.81 095 057 <22e-16 (0.86,

based 0.90)

The performance between the two algorithms trained to distinguish ASD cases
from SCZ cases is measured using five-fold cross validation. All performance
metrics are the average of the five cross validation folds

Acc Accuracy, NIR No information rate, C/ Confidence interval

as the one containing genes central to SCZ, as it in-
volved genes highly mutated, in different combinations,
among the highest proportion of SCZ patients in our
dataset.

The same analysis above was then repeated separately
based on ASD cases to obtain the genes central to ASD.

Analysis software

The “xgboost” (version 0.90.0.1) package [34] for R was
used as the implementation of the XGBoost algorithm.
The “scipy” (version 1.0.1) package [35] for Python was
used for the hierarchical clustering analyses.

Results

For our boosted regression trees models, we obtained an
accuracy of 86% for the SNV-based model and 88% for
the gene-based model. Detailed metrics of model per-
formance are listed in Table 1. A five-fold cross valid-
ation was also performed to provide additional
validation. Overall, the average validation accuracy over
all five folds was 88% for both the SNV-based model and
gene-based model (Table 2). The performance over
cross-validation is consistent with the results from the
single-fold training-validating with independent testing
approach mentioned above.

The ten most important genes from the gene-based
model and the SNV-based approach (including the ac-
tual SNV in parenthesis) are shown in Table 3. The
SNV-based model utilized 322 SNVs, located in 313
unique genes. The gene-based model utilized 1845 genes.
Combining the top 10 genes from both approaches
yielded a total list of 16 genes (Supplemental Table 1),
with an overlap of 4 genes including the top 2: SARM1
and QRICH2, and PCLO and PRPF31. Overall, out of all
the genes used by both models, 151 genes were overlap-
ping (Supplemental Table 2).

Clustering of these 151 overlapping genes based on
SCZ cases revealed three clusters of genes. Out of the
three clusters, cluster 2 showed the highest ratio (7.55)
of SCZ cases per cluster gene. Overall, 84.62% (506/598)
of SCZ cases in our dataset had a genetic change in at
least one of the genes in SCZ cluster 2, which is
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Table 3 Top 10 important genes from SNV-based and gene-
based models

SNV-based approach (SNV rsID)

Gene-based approach

SARM1 (rs71373646) SARM1
QRICH2 (rs6501878) QRICH2
AKAPT (rs34535433) PRPF31
PCLO (rs77721383) SEC24D
TSPO2 (rs147405274) SCN4A
ABCC3 (rs11568605) CACNA1S
KIF13A (rs41267712) CDSN
FANT (rs150393409) HERC2
CCDC155 (rs201671744) MUCT6
PRPF31 (rs199870856) PCLO

Boosted regression trees models were trained to separate SCZ and ASD
probands based on the population-structure-adjusted SNV-based and gene-
based datasets. The 10 most important genes from the gene-based model, but
also from the SNV-based approach (including the actual SNV in parenthesis),
are shown in this table. The table is ordered from most to least importance

composed of 67 genes (Fig. 1, Supplemental Table 3).
Similarly, clustering of the 151 overlapping genes, from
Supplemental Table 2, based on ASD cases, revealed two
clusters of genes. The highest ratio of cases per gene was
15.5 from ASD cluster 2. Overall, 98.49% (589/598) of
ASD cases in our dataset had a genetic change in at least
one of the genes in ASD cluster 2, which is composed of
38, out of the 151 overlapping genes being targeted
(Fig. 2, Supplemental Table 4).

Discussion

We have explored the genetic architecture of SCZ and
ASD families through boosted regression trees
(XGBoost) and clustering. Our focusing on rare variants
minimizes the impact of differences in population struc-
ture between the two datasets. However, before perform-
ing any analyses, we also used the well-known Eigenstrat
method to correct for any differences between datasets
due to population structure. Overall, through boosted
regression trees, we were able to find SNVs (and genes)
which can distinguish between SCZ and ASD case status
with accuracies of 88% for cross-validation and 85-90%
on testing data (specifically, 86% for SNV-based method
and 88% for gene-based method). To further study the
important genes identified from the boosted regression
trees, we hierarchically clustered the 151 genes identified
from both algorithms (Supplemental Table 2) using only
SCZ cases (and repeated the process for ASD). Our hy-
pothesis was that some of the genes identified as part of
the boosted regression trees approach might be import-
ant, central “hubs” for SCZ (and/or ASD). Through clus-
tering of the 151 overlapping genes, based on the shared
proportion of cases between genes, we were able to find
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groups of genes that were often mutated together in
SCZ cases (and ASD cases, respectively).

Overall, we have demonstrated a novel approach for
studying (comparing) the genetic architecture and
pathophysiology of two diseases. Instead of using all
SNVs from WES data, we first utilized a regularized ma-
chine learning approach optimized for large feature sets
to identify the most important genes for separating the
two groups (ASD and SCZ in this case). This step can
potentially reduce the number of features by a magni-
tude or more to eliminate noise from additional features
(SNVs and genes with no or little impact, in our case).
We have demonstrated that boosted regression trees can
separate SCZ and ASD patients based solely on their
WES data. This highlights the role of ML in deciphering
the genomic architecture of different diseases with
shared genetics.

Next, we identified (networks of) genes that are im-
portant for each disease, through hierarchical clustering
of genes based on the proportion of cases they shared.
Although each of the 151 genes may contribute to SCZ
or ASD to some extent, our focus was to find the central
group of genes that plays an important role in the ma-
jority of our cases. Our clustering method highlighted
these genes for SCZ (Fig. 1, Supplemental Table 3) and
ASD (Fig. 2, Supplemental Table 4). The dendrograms
created based on this approach denote genes mutated
concurrently in affected individuals and thus provide in-
formation about the networks of genes that appear to be
important for each of the diseases targeted. This ap-
proach can potentially help address the clinical hetero-
geneity of each disease. For example, after identifying
the central genes for SCZ, these genes can be used to
cluster SCZ patients and look for subgroups that could
then be characterized based on genetics, clinical features,
medication response, or disease progression.

Our bioinformatic analysis and literature review of the
identified genes revealed multiple pathways and net-
works important to SCZ and/or ASD. Focusing on the
top 10 genes identified by the two boosted regression
trees approaches (Supplemental Table 1), we found that
some of them already have evidence in the literature
linking them to SCZ and/or ASD.

For example, KIFI3A is a member of the kinesin
superfamily proteins (KIFs), which are important for cel-
lular transport and signal transduction [36]. KIF13A is
located in a SCZ susceptibility region of chromosome
6p23. A recent study on mice lacking KIF13A reported
elevated anxiety-related traits through a reduction in the
serotonin 5HT(1A)R receptor transport and reduced ex-
pression of the receptor in neuroblastoma cells and hip-
pocampal neurons [37]. Another study investigating the
mechanism of endosomal recycling revealed that KIF13A
interacts with the protein complex BLOC-1 and
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Gene clusters using SCZ cases
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Gene clusters using ASD cases
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Annexin A2, and that dysfunction of these interactions
may underly the pathophysiology of neurological defects
associated with SCZ [38]. Of note, a rare disruption of
another member of the KIFs, KIFI17, could also lead to
SCZ [39]. No evidence was found supporting the in-
volvement of this gene in ASD.

Fanconi-associated nuclease 1 (FANI), a DNA repair
enzyme, is located in the chromosome 15q13.3 locus. A
microdeletion in the locus, affecting FANI and six other
genes, is associated with increased risk of both ASD and
SCZ. Deletion of this region using mice models resulted
in increased seizure susceptibility and ASD symptoms
among other defects [40]. A study systematically search-
ing for SCZ risk variants identified variants in FANI,
which were associated with both SCZ and ASD [41].

Literature review of the genes revealed evidence for
both SCZ and ASD, which is consistent with the gene
networks hypothesis of common underlying genetic
drivers. At the same time, it is interesting to note that
some of the genes we identified do not have a (clear)
previous link to SCZ or ASD, suggesting that the ap-
proaches described in this manuscript can potentially
yield new insights for the genetics of the conditions
targeted.

Additionally, we conducted a bioinformatics analysis
and literature review of the SCZ and ASD “hub” genes.
Pathway enrichment analysis was performed using the
ShinyGO tool v0.61 [42] based on the ASD “hub” genes
(Supplemental Table 3) and SCZ “hub” genes (Supple-
mental Table 4) identified. Based on the pathway net-
work plot generated with Gene Ontology (GO)
biological processes meeting a false-discovery rate (FDR)
less than 0.2 (Supplemental Figures 1 and 2), we identi-
fied several themes. For ASD, we identified the following
themes: 1) calcium ion transmembrane transport, 2) im-
mune system and inflammation, 3) cell projection,
neuron maturation and synapse organization, 4) retinoid
metabolic process, 5) actin-related processes, and 6) blood
and platelet coagulation processes.

There is evidence that changes in calcium signaling may
be associated with ASD [43-45]. Similarly, multiple stud-
ies support a link of immune dysfunction and inflamma-
tion to ASD [46-48], while strong evidence exists for a
link with synaptic structures [49-52]. Upregulation of im-
mune genes and downregulation of synaptic genes was
observed in the postmortem brains of idiopathic ASD pa-
tients [53, 54]. Recent analyses in larger ASD cohorts of
postmortem brain collections showed upregulation of
immune-microglia and mitochondrial modules, and
downregulation of neuronal and synaptic modules [55].

Furthermore, actin and microtubule processes are linked
to ASD [56]. Also, alterations in actin dynamics by actin-
binding proteins and calcium signaling messengers is asso-
ciated with ASD [57]. In contrast to SCZ, ASD is
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associated with an increase in dendritic spine density in
several areas of the brain [50], which is thought to be
mainly regulated via postsynaptic actin filaments [57].

Some evidence also exists for a link of ASD to retinoid
and retinoic acid metabolic processes [58, 59], as well as
abnormalities in platelet and coagulation pathways [60—
62].

As illustrated above, several of the themes identified
have evidence for a joint role in ASD. In support to this,
in Fragile X, a well-known syndrome associated with
ASD, evidence has been published for all pathways men-
tioned above: from dysregulation of calcium signaling,
synaptic structures, actin to inflammation, and changes
in the retinoid and coagulation pathways [63—69].

For SCZ, our pathway enrichment analysis identified
the following themes: 1) ion transmembrane transport/
neurotransmitter transport, 2) microtubule/cytoskeleton,
3) response to carbohydrates/glucose/hexose stimulus,
and 4) kidney/renal system development. There is robust
evidence in the literature for the role of neurotransmit-
ters in SCZ [70, 71]. Moreover, recurrent evidence exists
linking microtubules/cytoskeleton and SCZ [72-78].
There is not much evidence for kidney development and
SCZ, but there have been studies showing that SCZ is
associated with chronic kidney disease, even after con-
trolling for demographic, behavioral, and medical risk
factors [79, 80]. Furthermore, a study found a polygenic
signature differentiating SCZ from controls, which could
also significantly differentiate type 2 diabetes patients
from controls by predicting a glycemic control indicator,
supporting a molecular commonality between SCZ and
type 2 diabetes [81]. Of note, Glucose metabolism has
been shown to be impaired in patients with first-episode
SCZ [82] and in antipsychotic-naive patients with psych-
osis [83].

Conclusion

We first showed that supervised learning can distin-
guish SCZ and ASD patients with high accuracy based
solely on their rare SNVs in 151 genes. Through clus-
tering analysis of these genes, we highlighted the im-
portant “hub” genes contributing to SCZ or ASD.
Bioinformatic analysis revealed several biological
themes associated with the “hub” genes of each dis-
order, including calcium ion transmembrane transport,
immune system/inflammation, synapse organization,
and retinoid metabolic process for ASD versus ion
transmembrane transport, neurotransmitter transport,
and microtubule/cytoskeleton processes for SCZ. Our
findings demonstrate the usefulness of ML analysis of
exome data in the study of the genetic architecture of
distinct, yet genetically overlapping, diseases with com-
plex inheritance.
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Future directions

In addition to rare SNV, common variants [84] and copy
number variations (CNVs) also have support in the litera-
ture for a role in ASD [85, 86]. Similarly, de novo CNVs
[13, 14] and common variants have also been associated
with SCZ [87, 88]. The presence of CNVs contributing to
these conditions suggests that it would be beneficial for
future studies to focus on whole-genome sequencing
(WGS) data, thus capturing both SNVs and CNVs, for
ML analyses. Moreover, the presence of common variants
as contributing factors to SCZ and ASD suggests that we
should not only focus on rare variants but also factor in
common variants in future ML analyses.
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