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Background: Major depressive disorder (MDD) is associated with dysfunction between cognitive control and
affective processing system. However, little is known about alterations of the nodal and edge efficiency in abnormal
systems of MDD patients. We used two independent datasets and two different structural templates to investigate
the alterations of the nodal and edge efficiency of whole-brain functional networks of MDD.

Method: Forty-two MDD and forty-two age, education-matched controls were selected to investigate network
efficiency abnormalities of the MDD patients’ cortical and subcortical regions, as well as the disrupted functional
connectivity between these regions, from the perspective of network topological architectures. In addition, another
dataset, which included thirty MDD patients and thirty controls, was also investigated using the same method.

Results: Results showed that MDD group demonstrated significant increase in the local efficiency, although not
change of global efficiency. In addition, nodal efficiency was found to increase in affective processing regions
(i.e, amygdale, thalamus, hippocampus), but decrease in cognitive control related regions, which included
dorsolateral prefrontal cortex and anterior cingulate cortex. The edge efficiency was found to increase, involving
both connectivity between thalamus and limbic system regions and connectivity between hippocampus and
regions (i.e, amygdala, thalamus). More important, result was replicated within independent datasets for the first

and different structural templates for another.

Conclusions: Our results indicated that MDD was associated with disrupted functional connectivity networks
between cognitive control and affective processing systems. The findings might shed light on the pathological
mechanism of depression and provide potential biomarkers for clinic treatment of depression.

Keywords: Network topology, Network efficiency, Major depressive disorder, Functional magnetic resonance

imaging, Cognitive control system

Background

Major depressive disorder (MDD) is one of world’s most
prevalent psychiatric disorders [14], which is character-
ized by inappropriate symptoms [6], such as losing inter-
est in daily activities, psychomotor retardation, sleep
disturbance, exacerbating the experience of negative ef-
fects and even attempt to suicide. Moreover, about 30 %
patients with MDD do not respond to standard anti-
depressant treatment [21] and patients who recovered
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still have 80 % probability cure other psychiatric disor-
ders of relapse [14].

Substantial structural and functional neuroimaging
researches on MDD revealed a complex neuropathophy-
siology involving regional deficits in the prefrontal-
thalamo-limbic and limbic-striatal-pallidal-thalamic systems
[21]. The dysfunctional systems mainly involved cortical re-
gions (mainly part of cognitive control network), such as
dorsolateral prefrontal cortex (DLPFC) [12, 14] and anter-
ior cingulate cortex (ACC) [9] and subcortical regions
(mainly part of affective processing network), which in-
cluded amygdala [28], hippocampus [22], parahippocampal
gyrus [23], caudate nucleus [26], posterior cingulate cortex
[23] and thalamus [25]. As for the cognitive control net-
work, previous studies found that depressed patients
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showed impaired attentional disengagement from negative
stimuli, which need top-down regulation and executive
functioning from cortical regions such as the DLPFC [7,
12]. In addition, ACC, which was associated with inhibition,
would contribute to impaired disengagement [7]. Prior
studies demonstrated that MDD would have greater activa-
tion when successfully inhibiting attention to negative stim-
uli [10, 11], while normal controls would demonstrated
greater rostral ACC activity when successfully inhibiting at-
tention to positive stimuli. These results suggested that
MDD patients would need more cognitive effort to divert
attention away from negative stimuli [7]. On the other
hand, affective processing network, including subcortical
regions such as amygdala, thalamus, demonstrated diverse
functional activity patterns. It is well-known that emotional
stimuli would be projected to the amygdala through the
transfer of thalamus (LeDoux). Then, amygdala, a brain
structure that is involved in detecting emotion, would inter-
pret and perpetuate the emotional quality of the stimulus.
This process would be regulated in part by indirect inhibi-
tory input from the DLPFC [8]. When depressed patients
process negative stimuli, amygdala would show greater re-
activity and longer lasting [8, 29], which may be associated
with DLPFC aberrant activation. As with the activation pat-
tern of amygdala in individuals of depression, hippocampus
would show enhanced activity in recall of negative, not
positive stimuli [14], after encoding in the amygdala.

Thus, it is of necessity to investigate functional connect-
ivity networks in the whole brain of the depression. In
addition, it would be useful for identification of diagnosis
biomarkers [4, 31] for MDD patient and advanced our un-
derstanding of the neuropsychopathology of depression to
some extent. Previous studies suggested that depression is
also associated with topological disorganization of brain
networks, including disrupted global integrity and regional
connectivity [18, 20, 32]. However, recent review sug-
gested that previous studies which examined the topo-
logical properties of brain functional networks with
depression contained only one group of subjects and the
results could not be duplicated. In addition, the structural
template was one important influence factor for topo-
logical properties. However, previous studies [20, 32]
mainly investigate the topological properties within one
structural template. Thus, independent datasets and the
same analysis strategy within different structural template
were important and needed to be investigated.

In the present study, we constructed brain function
networks of two independent datasets by using resting-
state functional magnetic resonance imaging (rs-fMRI).
Here, nodes are defined by anatomical regions of AAL
template and Harvard-Oxford Atlases respectively.
Connectivity between regions was defined as edges. We
calculated correlations between cortical and subcortical
regions to measure functional connectivity matrices.
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Then, the correlation matrices were thresholded to con-
struct brain functional networks. We finally analyzed the
topological properties of brain functional connectivity
networks and compared the differences between patients
with MDD and controls. Based on the previous studies,
we hypothesized that MDD patients would show dysfunc-
tion in regions of cognitive control network (e.g., DLPFC
and ACC) and affective processing network (e.g., amyg-
dala, thalamus, hippocampus and parahippocampal gyrus).
In addition, the altered functional connectivity networks
would be observed within regions of the resting-state net-
works which were associated with affective and cognitive
control processing [7].

Methods

Subjects

Two independent datasets was randomly selected from
our ongoing project, which examined the occurrence and
development of depression. In the first dataset, 98 subjects
(49 MDD and 49 controls), whose age from 18 to 60 years
participated in the experiments. In the second dataset, an-
other 36 MDD and 35 control was selected into the
present study. Inclusion criteria for MDD subjects are: (1)
patients meet the judgment of MDD defined by DSM-1V,
which was diagnosed by experienced psychiatrists
from the First Affiliated Hospital of Chongqing Med-
ical University and with score of Hamilton Depression
Rating Scale (HAM-D) larger than 24, (2) no history of
major medical or neurological abnormalities (e.g.: head
trauma with loss of consciousness, migraine, cyst, or un-
usually large ventricles); (3) not have metallic implants or
other factors which will influence fMRI examination; (4)
diagnosed as depressive disorder, but not bipolar disorder;
(5) no presence of alcohol or substance abuse. Inclusion
criteria for all healthy subjects are: (1) no drug abuse and
alcohol abuse in past two weeks, no drug dependence and
alcohol dependence in past one year, (2) no history of psy-
chiatric or neurological disorder and no significant family
history of psychiatric or neurological disorder.

This study was approved by the ethics committee of
School of Psychology at Southwest University, China.
We had obtained appropriate ethics committee approval
for the research reported, and all subjects have gave
written informed consent.

Image acquisition

The experiments are processed in the Southwest University,
Chongqing, China, using Siemens Trio 3-T scanner
(Siemens, German Erlangen). All subjects were required to
close their eyes and relax themselves without falling asleep.
Subjects laid supine with their head fixed by belt and foam
pads to reduce head movement. Thirty-two transaxial gra-
dient echo planar imaging was acquired using the
echo planar imaging sequecnce (thickness/gap = 3/1 mm,
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matrix = 64*64, repetition time (TR) = 2000 ms, echo time
(TE) =30 ms, flip angle =90°field of view =220 mm x
220 mm). A total of 242 volumes were acquired in this
scan for each subject.

Functional data preprocessing

The preprocessing of functional images for the two data-
sets were independently carried out using the SPMS.
The first 10 volumes were removed to allow for signal
equilibration. Then, the remaining 232 volumes which
we obtain from each subject were realigned to the first vol-
ume of head-motion correction in consideration of the ac-
quisition time delay among different slices. In order to
spatially normalized to the EPI template, the fMRI images
were resampled to 3-mm cubic voxel. To compensate for
residual within-subject variability, proceeding images were
smoothed using a isotropic Gaussian filter (full-width at
half-maximum = 6-mm). This step decreased high spatial
frequency noise and made sure that the gaussian random
field theory would obtain more applicability on further stat-
istical testing. Then, we removed the several spurious vari-
ance sources such as 6 motion parameters, linear drift and
the average time series in the cerebrospinal fluid and white
matter regions from for each subject. Eventually, temporal
band-pass filtering (0.01 ~ 0.08 Hz) was adjusted to reduce
the low-frequency drift and high-frequency effect.

Functional connectivity matrix and graph construction
For each dataset, two different structural templates were
both calculated. First was anatomical automatic labeling
(AAL) template; the brain is divided into 90 anatomical
regions of interest and there exist 45 regions in each
hemisphere. Another template was Harvard-Oxford
Atlases; the brain was divided into 96 cortical regions
and 16 subcortical regions. In order to analyze the func-
tional connectivity among regions, there were many
steps to follow. We first computed the average of the
time series of all voxels in each region. Then a mul-
tiple linear regression model was used to remove the
several resource of variance of BOLD signal from the
mean time series. The estimated profiles of head mo-
tion and the global brain activity were repressors [13].
Then, we used the residual of regression as substitu-
tion for the corresponding regions’ raw mean time
series. Finally, Pearson’s correlation coefficients were
computed to produce the symmetric correlation
matrix for each subject. Then, the matrix was trans-
formed using Fourier Z-Transform. In order to gain
the functional connectivity network, each Fourier Z-
Transform matrix is threshold into binary graph [19],
where regions as defined as nodes and connectivity
between regions as undirected unweighted edges [5].
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Efficiency of the small-world networks

Achard [1] found that brain functional networks own
small-world properties by investigating the efficiency
and cost of human brain functional networks. In the
present study, network cost was adopted because it
coupled with network efficiency and provides descrip-
tion of the network’s performance. Here, the cost of net-
work G =(V,E) which owns |V| nodes and |E| edges,
measured how expensive to build a network and was de-
fined in (1)

K

“A9=Nw12

(1)

where K=|V| and N=|E|. The denominator in eq.(1)
means the number of all possible edges in network G.
The cost threshold C(G) in a network determines the
topology of network. High cost threshold yielded sparser
network but low cost thresholded yield denser network.
However, there was no accurate way to choose a thresh-
old in the studies on brain networks [3, 15]. In order to
analyze the difference of network properties in two
groups, we investigated the properties of network over a
wide range of cost threshold from 0.03 to 0.5. In the fol-
lowing analysis, in order to reduce the influence of cost
on results, we investigated the network with different
value of cost.

By given a cost threshold C(G), we could quantify
properties of brain networks of MDD and control group
using efficiency measure. The global efficiency of a net-
work G was defined as eq.(2) [16, 17].

Eglobal(G) = Aﬁ Z Li” (2)

i#jeG

where L;; was the shortest length of the path from node
i to node j. If L;; was infinite, it would make no contri-
bution to the sum.

Egiopai(G) measured the information propagation effi-
ciency over network G. But Ej,.,(G) measured the local
efficiency in network, which was defined in eq.(3) [16, 17]
indicated how efficient the information exchanged in sub
networks

Euna(6) = oY E(G) 3)

G

where Ej,.,/(G) was the average of efficiency E(G;) of all
sub network. G; was a sub network in G and composed
of nearest neighbors of node i.

Besides the above two metrics, we also defined the
nodal efficiency, as in eq.(4), which measured the com-
munication efficiency between node i and other nodes in
network G
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Enodal(G7 l) = ]\% . Lil’] (4')
jeG

Prior studies which applied efficiency to measure the
brain functional networks ignored the edge efficiency be-
tween nodes. Here we used edge efficiency to investigate
network properties, which could measure the contribu-
tion of edge e in the information propagation. The edge

efficiency was defined in eq.(5)

1 1
Eedge(G7 e) = Z Z L (5)
ijeGeel ij

where L;; was the shortest path from node i to node j
passing through edge e. L was the number of shortest
path in the network [33].

Results

After excluding subjects with excessive motion (Dataset
1: 7 for MDD and 7 for control; Dataset 2: 6 for MDD
and 5 for control), 42 MDD patients and 42 controls for
dataset 1 (30 MDD patients and 30 controls for dataset
2) were included in our final analyses. Demographic and
clinical characteristics for all subjects of the two datasets
were in the Table 1. There were no significant differ-
ences between the groups with respect to age and educa-
tion for the two datasets. As expected, the two groups
differed significantly with respect to HAMD scores for
the two datasets. The depression severity for all MDD
patients reached severe level (24 or higher), with a mean
HAMD score of 26.88 (SD = 2.92).

Altered nodal efficiency in MDD patients

As the maximal difference was at the cost of 0.21 with
AAL template, we tested the regionally nodal efficiency
at the cost of 0.21 to reveal the aberrant nodal
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characteristics of the functional connectivity networks of
MDD. As shown in Fig. 1 and Table 2, MDD patients
demonstrated obvious increase in nodal efficiency in
some regions (i.e., amygdala, thalamus, fusiform gyrus,
hippocampus, rectus gyrus and middle frontal gyrus re-
gions) and significant decrease in nodal efficiency was
also found in regions in MDD (i.e., DLPFC and ACC).
To further reveal the affected regions, we compared the
brain topological networks of one control (see Fig. 2a) and
one MDD subject (see Fig. 2b). Results with other value of
cost and with another structural template were in the sup-
plement 1. In addition, results could be replicated from
the other dataset (see it in the Additional file 1).

Within the MDD group, we calculated pearson correl-
ation coefficients to examine how nodal efficiency within
the clusters relate to clinical severity. Results suggested
that there were significant negative correlations between
HAMD score and nodal efficiency of cognitive control
regions (right dorsal superior frontal gyrus and bilateral
anterior cingulate cortex). While HAMD score was
found to positive correlate with several affective process-
ing regions (right hippocampus, bilateral amygdala and
thalamus) (see Fig. 3).

Altered edge efficiency in MDD patients

As the nodal efficiency, correspond to the maximal
between-group difference in the local efficiency, we further
test the edge efficiency at the cost of 0.21 with AAL tem-
plate. Results (as shown in Fig. 4 and Table 3) showed that
obvious decrease in edge efficiency of MDD groups be-
tween DLPFC and regions (amygdala, thalamus, hippo-
campus, palladium), ACC and regions (amygdala, middle
frontal gyrus, hippocampus, putamen). In addition, we also
found significant increase in edge efficiency of MDD
groups between thalamus and regions (amygdala, putamen,
insula), between hippocampus and regions (amygdala,

Table 1 Demographic and Clinical Characteristics of the Study Samples (two datasets?)

MDD Control t p MDD Control t p

Sample size (male) 42 (21) 42 (19) 30 (4) 30 (12)

Age, mean (SD) 42.14 (12.33) 39.143 (11.72) 1.143 0256 4347 (15.71) 41.20 (10.96) 0.648 0519
Education (year), mean (SD) 10.74 (3.90) 11.238 (343) 0.624 0.534 12.57 (3.60) 10.86 (3.40) 1.869 0.067
HAMD, mean (SD) 26.88 (2.92) 2.119 (1.783) 46.861 0.000 2803 (3.74) 1.90 (1.81) 34484  0.000
Medication-naive 27° NA 18 NA

Past antidepressant use 14 NA 12 NA

Duration of illness (month), mean (SD) 49,06 (68.10) NA 30.83 (41.77)¢ NA

Family history of psychiatric disorder® 4 NA 6 NA

Comorbid generalized anxiety disorder 6 NA 11 NA

Comorbid obsessive-compulsive disorder 1 NA 0 NA

?Left for Dataset 1 and right for Dataset 2
b and %information for one subject was lost
*family history of depressive disorder up to second-degree relatives

HAMD, Hamilton Depression Scale; MDD, major depressive disorder; NA, not applicable
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Table 2 Changes of nodal efficiency at cost of 0.21 in MDD

group when compared with controls (Dataset 1)

Regions Hemisphere  tvalue P value
Depression < Control
Superior frontal gyrus,dorsolateral L —263 0.010
R =215 0.034
Anterior cingulate gyrus L —2.08 0.040
R -2.75 0.007
Depression > Control
Gyrus rectus R 2.56 0.012
Hippocampus R 2.60 0.010
Amygdala L 223 0.028
R 2.20 0.030
Fusiform gyrus R 2.10 0.039
Thalamus L 252 0013
R 245 0.016
Middle temporal gyrus L 268 0.009
R 2.18 0.031

thalamus) (see it in Fig. 5). In addition, results with other
value of cost and with another structural template were in
the supplement 1. Moreover, results could be replicated
from the other dataset (see it in the supplement 1).

In addition, we also calculated pearson correlation co-
efficients to examine how edge efficiency relate with
clinical severity. Results suggested that HAMD score was
negative correlated with edge efficiency which connected
between cognitive control regions (dorsal superior frontal
gyrus and anterior cingulate cortex) and affective process-
ing regions (amygdala, thalamus and hippocampus).
While HAMD score was found to positive correlate with
edge efficiency which connected within affective process-
ing regions (putamen, insula, hippocampus, amygdala and
thalamus) (see Fig. 6).

Discussion

In this paper, we investigated the node and edge efficiency
of functional connectivity networks in MDD patients. The
same analysis methods with different independent datasets
and structural templates repeated the results. Results
showed that MDD patients increased nodal efficiency in
limbic regions which were associated with affective
processing, yet decreased nodal efficiency in regions of
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cognitive control processing, such as DLPFC and ACC.
However, MDD patients decreased in edge efficiency in-
volving connectivity between regions of cognitive control
processing systems. Our results demonstrated that the
network efficiency of MDD patients are altered within
cognitive control and affective processing systems.
However, there are several issues needed to be ad-
dressed. First, our results of increased nodal efficiency in
limbic regions which were associated with affective pro-
cessing, yet decreased nodal efficiency in regions of cog-
nitive control processing, such as DLPFC and ACC in
MDD patients were different from one fMRI study. Vari-
ations in clinical characteristics of MDD maybe one
important factor to account for these discrepancies. Dif-
ferent clinical characteristics and depression severity
may result in different brain activations patterns and fur-
ther cause different brain network topological properties.
Future studies, which use MDD patients with different
clinical characteristics, may give us a more complete un-
derstanding of brain abnormalities. Secondly, the clinical
diagnosis of MDD has some limitations and is easily af-
fected by subjective knowledge and experience. Hence,
the objective diagnosis of MDD has high clinical value
in preventing severe disease. In addition, the present
study suggested that the measurement of topological
properties was a preferential candidate for diagnosing
MDD. Thirdly, large studies have indicated that the
cerebellum was closely associated with higher-order
functions, including emotion regulation and cognitive
processing, also have suggested that the cerebellum
should be included in the pathophysiological models of

MDD. However, because of the AAL template that we
chose did not contain the cerebellum, the current study
analyzed the functional brain network without cerebel-
lum. In future, the cerebellum should be involved in the
analyses by selecting the more comprehensive template
or making a special analysis on the cerebellum. Finally,
network disruptions in MDD patients is still in its
preliminary stage, and there are still many issues to be
deepening. Until now, MDD patients have been investi-
gated widely using complex network theory. Next, we
should forma hypothesis-generating framework to under-
stand the relationships between abnormal topological
properties and MDD.

In summary, the present study examined the node and
edge properties of brain functional networks in MDD
patients and normal controls using resting-state fMRIL.
Importantly, we replicated the results from independent
datasets and then from same network analysis with dif-
ferent structural templates. Results demonstrated that
network efficiency i.e., global efficiency, local efficiency,
nodal efficiency and edge efficiency analysis revealed that
depression patients showed small-world features, regions
activation, the strength of connectivity in brain func-
tional networks with MDD. These findings might pro-
vide effective potential biomarkers for clinic treatment
of depression and further pathophysiological mecha-
nisms of depressive patients.

First, in the present study, we validated the topological
disorganization of depression using two independent data-
sets and different structural templates. It was well-known
that, replicating promising findings in biomedicine was
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J

very difficult and replication rates might be about 25 % or
less. However, in order to make results more reliable in
the present study, we first used two independent datasets
and then conducted the network topological properties
analysis with different value of cost and structural
templates. Previous studies [32] with topological
disorganization of depression almost contained such

limitations. Despite the differences between the subjects
and templates examined in this study, the pattern of re-
sults was remarkably similar. Through the analysis, we re-
duced the false probability of result and increased the
reliability of calculated result.

Then, we applied the nodal efficiency which indicates
the importance of node in the whole network. The
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Fig. 4 MDD-related changes in edge efficiency when cost is 0.21. Red error bars correspond to the mean and standard error of the mean for
MDD group; black error bars correspond to the mean and standard error of the mean for control group

Table 3 Results of edge efficiency when compared MDD group with control

Regions of seed Connected regions MNI Coordinates t value p value
X Y z
Depression < Control
Left Superior frontal gyrus, dorsolateral Left Amygdala -23 -0.7 -17 -2.18 0.031
Left Thalamus -1 -18 8 -2.03 0.045
Right Superior frontal gyrus, dorsolateral Right Amygdala 27 06 -18 -2.30 0.023
Left Hippocampus =25 =21 -10 -2.25 0.027
Right Lenticular nucleus, pallidum 21 0.2 0.2 -2.06 0.043
Left Anterior cingulate gyrus Left Amygdala -23 -0.7 =17 —242 0018
Right Middle temporal gyrus 57 =37 -15 -233 0.022
Right Anterior cingulate gyrus Right Hippocampus 29 -20 -10 -2.09 0.039
Left Lenticular nucleus, putamen -24 39 24 -2.14 0.035
Depression > Control
Right Thalamus Left Amygdala =23 -0.7 =17 242 0018
Right Putamen 28 49 25 2.09 0.039
Right Insula 39 6.3 2.1 2.12 0.036
Left Hippocampus Left Amygdala -23 -0.7 =17 236 0.020
Left Thalamus -1 -18 8 2.06 0.042
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abnormal nodal efficiency in MDD compared to controls
in regions was obvious. The increases in nodal efficiency
occur in regions involving amygdale, thalamus, fusiform
gyrus, hippocampus, rectus gyrus and middle temporal
gyrus. As previous studies suggested, these regions were
core parts of affective processing network, which exhib-
ited dysfunction in MDD. Specifically, amygdala would
show greater reactivity and longer lasting when de-
pressed patients process negative stimuli. Hippocampus
would show enhanced activity in recall of negative, not
positive stimuli after encoding in the amygdala [7, 14].
Our study further shed light on the abnormality of the
affective processing system of MDD from the perspec-
tive of network. In addition, the decrease in nodal effi-
ciency is also found in MDD in the present study,
involving DLPFC and ACC. Decreased activation in re-
gions of executive control system has also been reported
in some other studies [9, 12, 14]. Prior studies investigat-
ing inhibition control on negative stimuli in MDD,
which suggested that depressed patients need greater
cognitive effort to divert attention away from negative
stimuli [10, 11, 24]. Being consistent with prior findings,
MDD patients in the present study showed less effective
cognitive control compared with normal subjects. More-
over, the present study highlighted the role of DLPFC
and ACC in affective control and in MDD. To further
verify the differences in nodal efficiency of regions in
MDD patients and normal controls, we made correlation
analysis between nodal efficiency and HAMD scores.
Our results demonstrated negative correlation between
the decrease in MDD patients’ nodal efficiency and
HAMD scores, but positive correlation between the in-
crease of nodal efficiency and HAMD scores. These
findings indicated that with the growing severity of
depression, the ability of cognitive control in MDD
decreased while dysfunction of affective processing
increased. In sum, increases in nodal efficiency in re-
gions of affective processing and decreases in regions of

cognitive control suggested that impaired cognitive con-
trol combined with abnormal affective processing lead to
development of MDD.

More interestingly, we found some decreased edge
efficiency, i.e., connectivity between DLPFC and limbic
regions (amygdala, thalamus, hippocampus and palla-
dium) and connectivity between ACC and limbic regions
(hippocampus, amygdala, putamen). On the other hand,
some increased edge efficiency, i.e., connectivity between
thalamus and regions (amygdala, putamen, insula) and
connectivity between hippocampus and regions (amygdala,
thalamus) was found. These alterations in edge efficiency
are compatible with previous MDD studies [2, 21, 30]. The
increased connectivity between regions in the limbic sys-
tem might indicate that bottom-up affective processing
was excessively processed in MDD [7, 27]. What’s more,
the decreased connectivity between regions of cognitive
control (DLPFC and ACC) and regions in limbic system
might indicate that top-down cognitive control of MDD
has less effect upon affective processing [7, 12]. To further
verify the differences in connectivity between regions in
MDD patients and normal subjects, we made correlation
analysis between edge efficiency and HAMD scores.
As expected, the result suggested that the decrease in
MDD patients’ edge efficiency (top-down control on
affective processing) has negative correlation with
HAMD scores, while the increase in edge efficiency
(bottom-up affective processing) had positive correl-
ation with HAMD scores. These correlation analysis
results confirmed our previous results.

Conclusions

Our results show that MDD obvious increase in nodal ef-
ficiency in some regions (i.e., amygdala, thalamus, fusi-
form gyrus, hippocampus, rectus gyrus and middle frontal
gyrus regions) and significant decrease in nodal efficiency
was also found in regions in MDD (i.e.,, DLPFC and ACC).
At the same time. The results indicate that obvious



Ye et al. BMC Psychiatry (2016) 16:450

Page 10 of 11

SFGdor.L - AMYG.L

0.12

0.1

+
t
+

Edge Efficiency

0.02

+ 4+

r=-0.40
* p = 0.004

24 26 28 30 32
HAMD Score

ACG.L - AMYG.L

34

+

0.05

Edge Efficiency

g
Q
@

0.02

0.01

+ i

H r=-0.32
009 * 4 p= 0.025

24 26 28 30 32
HAMD Score

THA.R - INS.R

0.12

0.1

Edge Efficiency

o
o
=

0.02

r= 0.29
+ p=0.038
+ +

24 26 28 30 32
HAMD Score

correlation with HAMD Scores

34

36

Edge Efficiency Edge Efficiency

Edge Efficiency

SFGdor.L - THA.L SFGdor.R - AMYG.R
0.12 0.1
. . r=-0.33 + o, * + r=-0.31
i p=0.019 ooor g 7* p =0.029
o1 0.08 i I
> 0.07
0.08 1)
c
@ 0.06
S
0.06 & 005
w
_Gé, 0.04
o w 0.03
0.02 + 002
oo t 0.1
X + o, + +
"% 2 28 a0 a2 34 % 2 28 a0 2 34
HAMD Score HAMD Score
ACG.R - HIP.R THA.R - PUT.R
0.12 : - 0.12
r=-0.44 r= 0.30
p =0.002 N p=0.034
0.1 0.1 + t
t
>
0.08 O 0.08
c
@
S
0.06 & 0.06
w
[
S 0.04
0.04 oo
0.02 0.02
0 0
24 26 28 30 32 34 36 24 26 28 30 32 34 36
HAMD Score HAMD Score
HIP.R - AMYG.L HIP.R -THA.L
0.14
r= 0.37 fuis r= 0.33
orz . p=0.008 L p=0.022
+
0.1 ¥
0.1 > 5 F +
8 E
S o008 E:
0.08 5 $ .
£ E:
W 0.06
0.06 ® 5
o ¥,
° + 4 5
0.04 w oo4r . +
T+
002t + * i
0.02 X $ , *
2 26 28 0 a2 8 % 2 26 28 30 2 a4 %
HAMD Score HAMD Score

Fig. 6 Upper scatter diagram shows correlation analysis between MDD edge efficiency and HAMD Scores. The figure shows that the edge
efficiency between left dorsolateral prefrontal cortex and regions (left amygdala, left thalamus), right dorsolateral prefrontal cortex and regions
(right amygdala, left anterior cingulate gyrus and right amygdala) has negative correlation with HAMD Scores. In addition, the edge efficiency
between right thalamus and regions (right putamen, right insula), left hippocampus and regions (left amygdala, left thalamus) has positive

decrease in edge efficiency of MDD groups between between thalamus and regions (amygdala, putamen, in-
DLPFC and regions (amygdala, thalamus, hippocampus, sula), between hippocampus and regions (amygdala, thal-
palladium), ACC and regions (amygdala, middle frontal amus). The findings might shed light on the pathological
gyrus, hippocampus, putamen). In addition, we also found  mechanism of depression and provide potential bio-
significant increase in edge efficiency of MDD groups  markers for clinic treatment of depression.
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