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Abstract
Background Major depressive disorder (MDD) has a high incidence and an unknown mechanism. There are no 
objective and sensitive indicators for clinical diagnosis.

Objective This study explored specific electrophysiological indicators and their role in the clinical diagnosis of MDD 
using machine learning.

Methods Forty first-episode and drug-naïve patients with MDD and forty healthy controls (HCs) were recruited. 
EEG data were collected from all subjects in the resting state with eyes closed for 10 min. The severity of MDD was 
assessed by the Hamilton Depression Rating Scale (HAMD-17). Machine learning analysis was used to identify the 
patients with MDD.

Results Compared to the HC group, the relative power of the low delta and theta bands was significantly higher 
in the right occipital region, and the relative power of the alpha band in the entire posterior occipital region was 
significantly lower in the MDD group. In the MDD group, the alpha band scalp functional connectivity was overall 
lower, while the scalp functional connectivity in the gamma band was significantly higher than that in the HC group. 
In the feature set of the relative power of the ROI in each band, the highest accuracy of 88.2% was achieved using 
the KNN classifier while using PCA feature selection. In the explanatory model using SHAP values, the top-ranking 
influence feature is the relative power of the alpha band in the left parietal region.

Conclusions Our findings reveal that the abnormal EEG neural oscillations may reflect an imbalance of excitation, 
inhibition and hyperactivity in the cerebral cortex in first-episode and drug-naïve patients with MDD. The relative 
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Background
Major depressive disorder (MDD) is a debilitating dis-
ease that is characterized by noticeable alterations in 
mood, interest, pleasure, cognition, psychomotor activ-
ity and vegetative symptoms [1]. The disease can have a 
negative impact on people’s daily lives, and the number 
of people suffering from the disease is increasing yearly. 
The current diagnosis of MDD is dependent on clinical 
interviewing with patients, which has obvious disadvan-
tages, including poor sensitivity, patient denial, subjective 
biases and inaccuracy. Detecting the declines in brain 
physiology prior to the onset of subjective symptoms 
plays a significant role in the recognition of MDD at an 
early stage, thus allowing early treatment that is benefi-
cial for MDD patients.

Electroencephalography (EEG) has been characterized 
as having high temporal resolution and low cost, which 
makes it more feasible for clinical application [2]. It con-
tributes to the categorization of the electrophysiology of 
the brain in symptomatic and asymptomatic individuals. 
Pizzagalli et al. showed that depressive subjects exhib-
ited more β3 in the pronounced right inferior and supe-
rior frontal regions than healthy control subjects and less 
β3 in the posteromedial cluster, including the posterior 
cingulate cortex and precuneus cortex [3]. Arikan et al. 
found that the group with suicidal ideation showed sig-
nificantly higher high-gamma power (40–50  Hz) than 
other groups through rest-state EEG [4]. A recent study 
recruiting 44 late-life depression (LLD) patients and 
41 healthy controls (HCs) showed that LLD patients 
had higher beta frequency activity and increased alpha 
activity than the HC group, and there were no correla-
tions between beta power and the severity of MDD [5]. 
Because of the heterogeneity of patients and the influ-
ence of drug medication, the characteristics of EEG spec-
trum power in first-episode MDD remain unclear.

From a neuropsychiatric viewpoint, there is a growing 
awareness that MDD is characterized by disrupted con-
nectivity between cortical and subcortical brain regions. 
There is evidence that synchronous oscillations can 
modulate functional connectivity between different brain 
regions. Liu et al. demonstrated that the dysfunction of 
oscillatory networks may be a promising indication of the 
pathoconnectomics of MDD [6]. A study of 16 depres-
sive patients and 14 healthy controls found that depres-
sive patients had abnormally enhanced brain functional 
connectivity in the gamma band by computing EEG 
coherence and demonstrated that the gamma band was 
sensitive to emotion processing [7]. Li et al. demonstrated 

that alpha, theta and delta phase synchronization were 
decreased, but beta phase synchronization was increased 
in depressive patients, which indicated that underphased 
synchronization and asynchrony during working mem-
ory processing reveal the impairment of attention effi-
ciency, memory and cortical inhibition in patients with 
MDD [8]. Previous studies focused on cognitive tasks 
and rest-state EEG can provide more informative insights 
into the pathophysiology of MDD. Therefore, it is essen-
tial to investigate the changes in scalp functional connec-
tivity in the resting state in MDD patients without any 
drug medication, and the correlation with psychiatric 
symptoms needs to be further explored.

Recently, EEG-based machine learning (ML) tech-
niques have attracted a considerable amount of attention 
due to their ability to noninvasively explore neuroimag-
ing data to build computer-aided diagnosis solutions to 
advance the diagnosis of MDD. Bachmann et al. recruited 
13 drug-free outpatients with MDD using linear meth-
ods and nonlinear methods to discriminate depressive 
patients and healthy controls. The results showed that 
combinations of these features had a maximal classifica-
tion accuracy of 92% [9]. One study utilized 6 channels 
(FT7, FT8, T7, T8, TP7, TP8) with the Gaussian kernel 
of SVM and achieved an accuracy of 96.02% for screen-
ing depression [10]. However, no study has used machine 
learning to combine spectral power and scalp functional 
connectivity to identify MDD in the early stage.

To date, most studies focusing on the brain spectral sig-
nature of MDD have shown inconsistent results, and no 
study has examined first-episode and drug-naïve MDD 
with machine learning approaches combining spectral 
power and scalp functional connectivity. To address the 
heterogeneity of the results of electroencephalography 
in MDD studies, we collected detailed data on whole-
brain neural activity and functional connectivity to (1) 
determine the specific electrophysiological indicators in 
first-episode and drug-naïve patients with MDD and (2) 
explore the role of these electrophysiological indicators 
in the clinical diagnosis of MDD using machine learning.

Methods and materials
Participants
Forty right-handed patients with first-episode and drug-
naïve MDD and forty right-handed HCs were recruited 
to participate in this study. All MDD patients were out-
patients or inpatients at the Affiliated Brain Hospital 
of Guangzhou Medical University from June 2021 to 

power of the alpha band in the left parietal region is expected to be an objective electrophysiological indicator of 
MDD.
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November 2022. All HCs participants were recruited 
from the community through posters or forums.

The inclusion criteria for patients were as follows: (1) 
met the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-V) criteria for MDD; (2) age 18–45 years; 
(3) the duration of the illness was less than 2 years; (4) 
no history of psychotic medication or any other somatic 
therapy (e.g., modified electric convulsive treatment); 
and 4) the value of the HAMD-17 scale ≥ 17. The inclu-
sion criteria for HCs were as follows: (1) no psychiatric 
disorders meeting the DSM-V criteria; and (2) no fam-
ily history of mental disease. The exclusion criteria for 
all participants were as follows: (1) had serious physical 
and neurological disease; (2) had a history of epilepsy, 
febrile convulsions or coma; (3) had history of substances 
and drug abuse; and (4) could not cooperate with EEG 
examination.

The study was approved by the Ethics Committee of 
the Affiliated Brain Hospital of Guangzhou Medical Uni-
versity. The study was conducted according to the Dec-
laration of Helsinki. All participants signed an informed 
consent form ahead of enrollment.

Clinical measurement
All participants were interviewed and underwent a struc-
tured clinical interview by two experienced psychiatrists 
using the Mini-International Neuropsychiatric Interview 
(M.I.N.I.). The severity of MDD was assessed using the 
Hamilton Depression Rating Scale (HAMD-17).

EEG acquisition and processing
EEG Recording
Resting-state EEG data were recorded for each partici-
pant with their eyes closed for ten minutes by a trained 
technician. EEG data were obtained from 32 channels of 
Ag/AgCl electrodes using the Neuroscan system with a 
sampling rate of 1000 Hz and paced on the scalp in accor-
dance with the International 10–20 system: C3, C4, F3, 
F4, F7, F8, Fp1, Fp2, FC1, FC2, FC5, FC6, Fz,T7, T8, P3, 
P4, Pz, CP1, CP2, CP5, CP6, Oz, P7, P8, O1, O2, PO3, 
PO4. During EEG recording, the impedance of each elec-
trode was maintained below 10 KΩ, and Pz was set as the 
reference electrode.

EEG Preprocessing
All EEG data were imported into the EEGLAB toolbox in 
MATLAB R2013a software. The bandpass filter band was 
0.1–80 Hz, and the notch filter band range was 49–51 Hz. 
The continuous EEG was downsampled to 500 Hz. A 2-s 
epoch segment was set for bad epoch data rejection and 
further analysis [11]. Bad channels were interpolated 
using spherical splines. Independent component analy-
sis was used to remove eye movement artifacts. Seg-
ments with voltage values exceeding ± 80 were manually 

rejected. EEG data were rereferenced to the common 
average reference. Spectral power and functional con-
nectivity in the 2-s segments were measured. Finally, we 
excluded four EEGs from MDD patients and nine EEGs 
from HCs for their poor quality.

Power Spectrum
The power spectrum belonged to quantitative EEG, 
which simply reflected the changes of activity of the 
brain. Moreover, the power spectrum was regarded 
as linear parameters which were used in many existed 
studies. Power spectrum was calculated by perform-
ing a Fast Fourier Transform (FFT) algorithm to extract 
the features in the frequency domain, including: alpha 
(8–13  Hz), beta (13–30  Hz), theta (4–8  Hz), gamma 
(30–80  Hz), delta (1–4  Hz). The scalp electrodes were 
clustered into eight groups according to the regions of 
interest (ROIs), including the right parietal region (C4, 
CP6, CP2, P4), right frontal region (FC2, FC6, F4, FP2), 
right occipital region (PO4, O2), right temporal region 
(F8, T8, P8), left parietal region (P3, CP1, CP5, C3), left 
frontal region (FP1, F3, FC5, FC1), left temporal region 
(P7, T7,  FT7), left occipital region (O1, PO3), and left 
parietal region (C3, CP5, CP1, P3). The relative power in 
each frequency band was derived by dividing the absolute 
power of each frequency band by the total broadband of 
the absolute power, which included the delta band, theta 
band, alpha band, beta band and gamma band. The for-
mulas were as follows:

The relative of alpha power = the absolute power of 
alpha / (the absolute power of delta + the absolute power 
of theta + the absolute power of alpha + the absolute 
power of beta + absolute power of gamma).

Functional connectivity
The weighted phase lag index (wPLI) was used to com-
pute the functional connectivity between all pairwise 
combinations of 29 channels. The connectivity between 
the two regions was calculated by the average wPLI value 
of all electrode pairs of recording sites between the two 
regions.

Machine learning analysis
Python was used to conduct the data analysis of the five 
classification algorithms, including decision tree (DT), 
gradient boosting decision tree (GBDT), support vec-
tor machine (SVM), naïve Bayesian (NB) and K-nearest 
neighbor (KNN). We used three methods to select fea-
tures, including recursive feature elimination based on 
SVM (SVM-RFE), selection operator and least absolute 
shrinkage based on L1 (LASSO-L1) and principal com-
ponent analysis (PCA).

The relative power of each band of each scalp area was 
regarded as set (1) The functional connectivity of any two 
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scalp areas was regarded as set (2). The combinations of 
set 1 and set 2 were regarded as set (3). Permutation test-
ing was utilized to evaluate the statistical significance of 
the classifier performance.

The importance of each feature was interpreted by the 
SHAP values. SHAP is an acronym for Shapley Additive 
exPlanations, which was a unified framework introduced 
for interpreting machine learning predictions. The SHAP 
technique calculates the Sharpley value by evaluating 
the contribution and influence of each feature to model 

prediction [12]. The importance ranking of the top 20 
factors with stability and interpretation using optimal 
model. The red part in feature value represents higher 
value. The higher SHAP value of a feature is given, the 
more important feature in predicting depression.

As shown in Fig. 1, we used 1000 sampling points as a 
sample. Since the data sampling rate was down sampled 
to 500 Hz, a sample should take 2 s. After the data cut-
ting, the total sample size of the two groups was 19,500. 
Then, 90% of the data was used for training and 10% for 

Fig. 1 The flowchart of machine learning

 



Page 5 of 13Huang et al. BMC Psychiatry          (2023) 23:832 

testing. The stratification of the dataset was based on the 
participants.

Statistical analysis
Statistical analyses were carried out using SPSS (version 
23.0). For continuous variables, an independent samples 
t-test was conducted to compare intergroup differences. 
The comparison of two groups of relative power was 
computed using the independent sample two-tailed t-test 
across ROIs in five frequency bands. Pearson’s χ2 test 
was used to test sex differences between two groups. The 

false-discovery rate (FDR) correction was employed to 
reduce the type I error in multiple comparisons. Pearson 
correlation analysis was performed to explore the corre-
lations between EEG features and clinical factors. Results 
were defined as significant if the two-tailed p value was 
lower than 0.05.

Results
Demographic characteristics
Table 1 includes demographic information of the subjects 
in the MDD group and HC group. There was no signifi-
cant difference between the two groups in terms of sex 
and age.

EEG feature analysis
The relative power
As shown in Fig. 2, in the right posterior occipital region, 
the relative power of the delta and theta bands was found 
to be significantly different. The relative power of the 
alpha band was also significantly different in the whole 
posterior occipital region. There were no differences in 
beta and gamma bands. Furthermore, the relevant data 

Table 1 Demographic characteristics of two groups
MDD group
(n = 36)

HC group
(n = 31)

P-value

Gender(male/female) 14/22 14/17 0.590
Age(years) 22.7 ± 2.1 25.2 ± 6.9 0.054
Education (years) 15.0 ± 1.7 14.6 ± 2.5 0.500
Age of onset (years) 24.5 ± 7.6 — —
Course of disease (month) 6(1,48) — —
HAMD-17 21.9 ± 6.9 — —
MDD: major depression disorder; HC: Healthy control

Fig. 2 Comparison of the relative power between two groups in each ROI area in each frequency band
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were extracted. In the left occipital region, the rela-
tive power of the alpha band in the MDD group was 
significantly lower than that in the HC group (t = 4.829, 
FDRp = 0.01), but the relative power of the delta band 
was significantly higher than that in the HC group 
(t  =  -3.357, FDRp = 0.01). In the right occipital region, 
the relative power of delta (t =  -4.934, FDRp = 0.01) and 
theta (t =  -4.007, FDRp = 0.01) bands in the MDD group 
was significantly higher than that in the HC group. The 
relative power of the alpha band in the MDD group was 
significantly lower than that in the HC group (t = 6.142, 
FDRp = 0.01). In the right parietal region, the relative 
power of the alpha band in the MDD group was sig-
nificantly lower than that in the HC group (t = 2.886, 
FDRp = 0.03) (Fig. 3).

Functional connectivity
As shown in Fig. 4, there were no differences in wPLIs in 
the delta and theta bands. However, wPLIs were signifi-
cantly weakened in the alpha band and enhanced in the 
gamma band across all regions of the brain in the MDD 
group (all p < 0.001).

Correlations between EEG features and clinical symptoms
There were no correlations between the relative power of 
alpha and delta and HAMD-17 scores in the left occipi-
tal region (r = 0.201, p = 0.379; r  =  -0.233, p = 0.171) and 
right occipital region (r  =  -0.182, p = 0.289; r  =  -0.110, 
p = 0.521).

Classification of MDD based on EEG features
The classification results of each feature set based on dif-
ferent classifiers with different feature selection methods 
were shown as Accuracy, Precision, Recall and AUC. 
They were expressed as mean ± sd (Table 2).

The highest classification accuracy was achieved when 
only feature set 1 was used. That is, when we selected the 
relative power of each band of the ROI, we achieved the 
highest accuracy (88.2%) using PCA feature selection and 
the KNN classifier. The result of permutation test was 
less than 0.01. This result indicated that the prediction 
accuracy of the KNN classifier was significantly higher 
than that of the random prediction case, which is of prac-
tical significance.

Figure  5 shows the SHAP values of each feature for 
each sample. One dot represents a sample, and the color 
indicates the feature value (the blue color indicates a low 
value, and the red color indicates a high value). In the 
model, the top-ranking influence feature is the relative 
power of the alpha band in the left parietal (LP-alpha).

(LF/RF/LP/RP/LT/RT/LO/RO-delta/theta/alpha/beta/
gamma: Left Frontal/ Right Frontal/ Left Parietal/ Right 
Parietal/ Left Temporal/ Right Temporal/ Left Occipital/ 
Right Occipital-delta/ theta/ alpha/ beta/ gamma).

Discussion
This was the first study to use machine learning com-
bined with spectral power and scalp functional con-
nectivity to identify first-episode and drug-naïve MDD. 
The findings of our study included the following: (1) 
compared to the HC group, the relative power of the 
low delta and theta bands was significantly higher in the 
right occipital region, and the relative power of the alpha 
band in the entire posterior occipital region was signifi-
cantly lower in the MDD group; (2) in the MDD group, 
the alpha band scalp functional connectivity was over-
all lower, while the scalp functional connectivity in the 
gamma band was significantly higher than that in the 
HC group; and (3) the relative power of each frequency 
band in each scalp brain region used as the input feature 

Fig. 3 The differences in the relative power in frequency bands between the two groups (RP-alpha: Right Parietal-alpha; LO-delta: Left Occipital-delta; 
LO-alpha: Left Occipital-alpha; RO-delta: Right Occipital-delta; RO-theta: Right Occipital-theta; RO-alpha: Right Occipital-alpha)

 



Page 7 of 13Huang et al. BMC Psychiatry          (2023) 23:832 

Fig. 4 The functional connectivity of scalp brain regions between the two groups in each frequency band (significant pairs: Functional connectivity pairs 
representing two groups whose functional connectivity values are still statistically different after FDR correction; HCs > Patients: The functional connectiv-
ity was greater in HCs than in patients; HCs < Patients: The functional connectivity was weaker in HCs than in patients)
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Table 2 The classification results of different sets
Feature selection Model Accuracy Precision Recall AUC p-

value
Set1
SVM-RFE DT 0.751 ± 0.017 0.774 ± 0.016 0.773 ± 0.013 0.749 ± 0.017 0.0099

SVM 0.776 ± 0.010 0.787 ± 0.013 0.809 ± 0.012 0.774 ± 0.010 0.0099
GBDT 0.803 ± 0.013 0.817 ± 0.014 0.817 ± 0.013 0.800 ± 0.012 0.0099
NB 0.679 ± 0.014 0.741 ± 0.019 0.627 ± 0.013 0.681 ± 0.014 0.0099
KNN 0.772 ± 0.014 0.731 ± 0.014 0.913 ± 0.012 0.755 ± 0.015 0.0099

LASSO-LR DT 0.830 ± 0.012 0.843 ± 0.013 0.846 ± 0.013 0.828 ± 0.012 0.0099
SVM 0.859 ± 0.012 0.896 ± 0.011 0.837 ± 0.022 0.861 ± 0.010 0.0099
GBDT 0.826 ± 0.008 0.845 ± 0.013 0.831 ± 0.013 0.827 ± 0.008 0.0099
NB 0.661 ± 0.013 0.778 ± 0.018 0.525 ± 0.016 0.675 ± 0.012 0.0099
KNN 0.851 ± 0.012 0.811 ± 0.013 0.946 ± 0.010 0.842 ± 0.013 0.0099

PCA DT 0.792 ± 0.014 0.808 ± 0.015 0.809 ± 0.020 0.791 ± 0.015 0.0099
SVM 0.870 ± 0.009 0.891 ± 0.011 0.867 ± 0.015 0.871 ± 0.010 0.0099
GBDT 0.813 ± 0.013 0.832 ± 0.017 0.823 ± 0.015 0.813 ± 0.013 0.0099
NB 0.687 ± 0.013 0.768 ± 0.013 0.608 ± 0.027 0.694 ± 0.013 0.0099
KNN 0.882 ± 0.006 0.847 ± 0.008 0.955 ± 0.011 0.877 ± 0.008 0.0099

Set2
SVM-RFE DT 0.543 ± 0.034 0.596 ± 0.034 0.577 ± 0.047 0.541 ± 0.035 0.0099

SVM 0.590 ± 0.037 0.597 ± 0.022 0.845 ± 0.042 0.560 ± 0.037 0.0099
GBDT 0.598 ± 0.027 0.615 ± 0.019 0.764 ± 0.035 0.580 ± 0.025 0.0099
NB 0.513 ± 0.029 0.609 ± 0.041 0.353 ± 0.064 0.532 ± 0.026 0.0099
KNN 0.561 ± 0.017 0.576 ± 0.012 0.817 ± 0.033 0.527 ± 0.019 0.0099

LASSO-LR DT 0.553 ± 0.024 0.599 ± 0.026 0.602 ± 0.033 0.544 ± 0.027 0.0099
SVM 0.618 ± 0.032 0.622 ± 0.021 0.822 ± 0.028 0.594 ± 0.033 0.0099
GBDT 0.585 ± 0.020 0.606 ± 0.013 0.748 ± 0.044 0.579 ± 0.046 0.0099
NB 0.503 ± 0.026 0.607 ± 0.028 0.296 ± 0.073 0.524 ± 0.021 0.0099
KNN 0.564 ± 0.019 0.573 ± 0.013 0.854 ± 0.036 0.521 ± 0.022 0.0099

PCA DT 0.536 ± 0.030 0.585 ± 0.028 0.576 ± 0.049 0.524 ± 0.032 0.0099
SVM 0.617 ± 0.039 0.615 ± 0.028 0.837 ± 0.025 0.579 ± 0.042 0.0099
GBDT 0.575 ± 0.032 0.601 ± 0.019 0.730 ± 0.035 0.560 ± 0.027 0.0099
NB 0.582 ± 0.020 0.623 ± 0.018 0.650 ± 0.048 0.575 ± 0.021 0.0099
KNN 0.553 ± 0.025 0.571 ± 0.018 0.825 ± 0.039 0.517 ± 0.028 0.0099

Set3
SVM-RFE DT 0.721 ± 0.015 0.787 ± 0.019 0.723 ± 0.020 0.719 ± 0.011 0.0099

SVM 0.755 ± 0.012 0.753 ± 0.010 0.768 ± 0.005 0.719 ± 0.012 0.0099
GBDT 0.786 ± 0.011 0.768 ± 0.12 0.808 ± 0.011 0.778 ± 0.014 0.0099
NB 0.639 ± 0.013 0.732 ± 0.021 0.590 ± 0.012 0.655 ± 0.016 0.0099
KNN 0.758 ± 0.012 0.708 ± 0.019 0.865 ± 0.020 0.734 ± 0.017 0.0099

LASSO_LR DT 0.828 ± 0.011 0.835 ± 0.018 0.833 ± 0.012 0.802 ± 0.012 0.0099
SVM 0.837 ± 0.013 0.876 ± 0.008 0.822 ± 0.003 0.842 ± 0.015 0.0099
GBDT 0.811 ± 0.012 0.832 ± 0.011 0.822 ± 0.022 0.838 ± 0.022 0.0099
NB 0.661 ± 0.009 0.789 ± 0.012 0.588 ± 0.011 0.655 ± 0.008 0.0099
KNN 0.844 ± 0.013 0.798 ± 0.018 0.900 ± 0.011 0.802 ± 0.021 0.0099

PCA DT 0.786 ± 0.016 0.819 ± 0.012 0.758 ± 0.019 0.788 ± 0.016 0.0099
SVM 0.845 ± 0.011 0.887 ± 0.014 0.856 ± 0.011 0.886 ± 0.012 0.0099
GBDT 0.822 ± 0.012 0.844 ± 0.017 0.818 ± 0.011 0.823 ± 0.019 0.0099
NB 0.667 ± 0.011 0.768 ± 0.023 0.668 ± 0.015 0.688 ± 0.011 0.0099
KNN 0.876 ± 0.018 0.833 ± 0.012 0.923 ± 0.015 0.857 ± 0.012 0.0099

AUC: Area Under the Cure; p-value: Permutation test p value; SVM-RFE: Support Vector Machines- Recursive Feature Elimination; LASSO_LR: Least Absolute Shrinkage 
and Selection Operator- Logistic Regression; PCA: Principal Component Analysis; DT: Decision Tree; GBDT: Gradient Boosting Decision Tree; NB: Naïve Bayesian; KNN: 
K-Nearest Neighbor
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set achieved the highest accuracy rate (88.2%), and the 
top-ranking influence feature is the relative power of the 
alpha band in the left parietal region.

Our results showed that the relative power of the theta 
and delta bands in the MDD group was significantly 
higher than that in the HC group. Previous studies have 
also confirmed that the severity of MDD symptoms 
is positively proportional to theta power. The activity 
of the theta band is associated with emotional stimuli 
and that the activity of theta rhythms can be enhanced 
by high arousal from negative pictures [13], which may 
explain that the theta rhythm is associated with the elec-
trical activity of the medial prefrontal cortex [14]. Lee et 
al. found that compared to the group with lower suicidal 
ideation scores, the relative power of theta in the central 
frontal regions (CZ, FZ, FCz, and F3) was significantly 
higher in the group with high suicidal ideation scores 
[15]. Delta waves affected the incentive and reward areas 
of the cerebral cortex, which suggested that they were 
significantly associated with emotion production [16]. 
It has been suggested that the high activity of the delta 
band in MDD patients is a compensatory mechanism for 
the deficits in cortical function caused by MDD, which is 
caused by MDD may be achieved through the modula-
tion of cognitive function. An increase in the power of the 

delta band may inhibit interference affecting cognitive 
tasks in the cerebral cortex, which increases the attention 
and concentration required to perform certain cogni-
tive tasks in patients with MDD [17]. However, our find-
ings focused on the right occipital area, while there is no 
basis to support that the abnormal activation in this brain 
region is associated with the relative power enhancement 
of the delta and theta bands of the brain region. Further 
research is needed to investigate this topic.

Our findings also suggested that patients with MDD 
have lower relative alpha power in the occipital region 
than the HC group, which was consistent with previ-
ous studies [18–20]. Alpha rhythms are thought to be 
generated by cortico-thalamic brain interactions, which 
involve a large number of cognitive operations, particu-
larly sensory system control, working memory and atten-
tion [21]. The decline in the relative power of the EEG 
alpha band in MDD reflected increasing negative emo-
tions and significant activation of the cerebral cortex [22, 
23], which may be related to a reduced thalamocortical 
synchronization system. Additionally, decreased alpha 
energy in the occipital region of depressed patients may 
be related to increased arousal and cortical excitabil-
ity in the posterior occipital region of the brain, which 
revealed a chronic stress response in the development of 

Fig. 5 SHAP model explanation
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MDD. Moreover, it may also be related to the genotype 
of the individual. Compared to gene Val carriers, MDD 
gene Met carriers had lower overall absolute alpha power 
under closed-eye conditions [20]. This may be because 
brain-derived neurotrophic factor (BDNF) protein secre-
tion was limited in Met allele carriers [24] and the effect 
on functional connectivity. However, some studies have 
shown the opposite results [25, 26]. One reason may be 
related to the age of onset of the subjects. Alpha oscilla-
tions are prone to change during critical neural develop-
ment, such as puberty [27]. Another explanation can be 
found in the heterogeneity of subjects, for example, the 
differences in drugs, sex, and subtypes of MDD. These 
factors should be more clearly controlled in the future. 
Significant changes in alpha rhythm can help explain the 
neural mechanisms of MDD, and our study – which is 
the first to examined untreated subjects – provides theo-
retical support for subsequent studies on neural marker 
identification and detection methods.

MDD is characterized by imbalances in communica-
tion between large-scale functional networks, including 
resting-specific hyper and hypoconnectivity within and 
between brain networks [28]. Our study demonstrated 
functional connectivity disorder between cortical regions 
in patients with MDD, which was consistent with previ-
ous studies [29, 30]. Previous studies have shown that 
MDD exhibits significantly disrupted network charac-
teristics, which are closely related to the emotional pro-
cessing disorder of MDD. That is, changes in the MDD 
network in the alpha band may lead to changes in emo-
tional response or emotional arousal [30]. Alpha rhythm 
synchronization was associated with the activity of the 
default mode network (DMN) [31]. Thus, any disrup-
tion of the DMN in MDD may manifest as changes in 
EEG alpha oscillations and desynchronization of alpha 
band connections. However, some studies with other 
indicators of functional connectivity(e.g., coherence) 
have produced inconsistent results.A study of 12 out-
patients with drug-free MDD and 10 HCs showed that 
MDD had significantly increased functional connectivity 
in the alpha and theta bands by using the signal synchro-
nization called the “structural synchronization index“ 
[32]. Leuchter et al. found that patients with MDD had 
higher connectivity in beta, alpha, theta and delta bands 
than HCs [33]. Therefore, there is a need to use a uni-
form functional connectivity evaluation index to explore 
phase-synchronous changes in the alpha band of MDD 
with a large sample.

Our study showed that there existed a significant 
increase in functional connectivity between overall 
scalp-brain regions in the gamma band, which was in 
line with previous studies [7, 32, 34]. Previous studies 
confirmed that gamma oscillations are sensitive to emo-
tional processing [7]. When patients were depressed, 

their brains became information activated or overloaded. 
It may be attributed to the fact that increased gamma 
functional connectivity leads to abnormal activation of 
the depressed brain or overload of communication. The 
increasing connectivity in the gamma band may reflect 
increased attentional function [35, 36], which reflect the 
neural mechanisms of information connectivity. More-
over, the functional connectivity enhancement of the 
gamma band in patients with MDD may be related to 
the relationship between serotonin and γ-aminobutyric 
acid (GABA) signaling. Serotonin is a widely distrib-
uted neurotransmitter in the central nervous system 
[37]. Previous studies have demonstrated that activation 
of 5-hydroxytryptamine signaling has been shown to 
inhibit the inhibitory function of GABA-energic neurons 
[38]. In 5-hydroxytryptamine deficiency (e.g., MDD), 
GABA-energic signaling in the cortex may be enhanced, 
and GABA plays a role in the production and regula-
tion of endogenous motor cortical rhythm beta and 
gamma activity [39]. However, there are other results that 
may differ from our study. An EEG study showed that 
depressed patients in the beta band of the DMN showed 
greater functional connectivity [40]. Kim et al. suggested 
that the pathophysiological mechanisms of depressive 
states may be related to excessive neural processing in 
the beta band [41]. Therefore, further longitudinal studies 
with large samples are needed to investigate gamma band 
alterations in MDD.

It is worth mentioning that the relative power of the 
alpha band in the left parietal region was lower in the 
MDD group than in the HC group, which strongly con-
tributed to the automatic classification of MDD. Previous 
studies suggest that dysregulation of the left subparietal 
cortex in depressed patients may not only be associated 
with deficits in audiovisual integration but also with 
impaired memory and emotional processing deficits in 
patients with MDD [42]. Therefore, the above results of 
this machine learning are reasonable. The results fur-
ther confirmed the dysfunction of the left parietal lobe 
in patients with MDD [42]. Moreover, the finding was 
in agreement with the statistically calculated differences 
in EEG features. In the two independent sample t-tests, 
there were group differences in all the above three indi-
cators. However, the relative power of alpha in the left 
parietal region was not significantly different after FDR 
correction. The reason for this may be related to the small 
number of subjects. Therefore, to some extent, there was 
a significant difference in the relative power of the alpha 
band in the left top region between the two groups. Addi-
tionally, the top three features belong to the alpha band 
power. The alpha band power achieves a high classifica-
tion accuracy, which is consistent with a previous study 
[43]. Finally, our results showed that feature set 1 alone 
achieves the highest classification accuracy, which was 
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higher than that of the combination of two feature sets. 
We have known that the set 2 achieved the lower accu-
racy in the machine learning. After the calculations of 
functional connectivity of any two regions above, we 
found that the values of wPLIs in depression group were 
less than 0.5. It indicated that the scalp of functional con-
nectivity of any two regions were relatively lower. There-
fore, when we regarded the functional connectivity as 
feature set 2, we achieved accuracy which varied from 
0.50 to 0.618. The causes may be owed to the low resolu-
tion of the functional connectivity of any two scalp brain 
regions in each band. When we combined set1 and set2 
together, we didn’t achieve the highest accuracy in the 
machine learning. We considered that combining with 
the connectivity may cause interference, which affects 
the classification and thus reduces the accuracy. How-
ever, our results achieved an accuracy of 88.2%, which 
was lower than the results of the studies of Abdolkarim 
Saeedi [44] and Chien-Te Wu [45]. Abdolkarim Saeedi 
et al. developed E-KNN rather than KNN to give infor-
mation on feature importance index and improve the 
results (an accuracy of 98.44%). Chien Te Wu et al. uti-
lized the combination of the optimal feature subset and 
CK-SVM achieving an accuracy of 91.07% on the train-
ing set. In comparison, we analyzed the spectral power 
and functional connectivity and combined with using five 
machine-learning algorithms for classification. We spec-
ulated that the feature selection and the method of clas-
sifier algorithms were contributed to our lower accuracy.

Due to the impact of medication on the EEG and emo-
tional state of MDD patients, we recruit first-episode 
MDD patients who did not take medication to rule out 
the impact of medication as an interfering factor. We 
explored the abnormalities of EEG features in MDD 
patients to clarify the EEG mechanism of depression in 
resting state. Combining with the machine learning, we 
would provide a theoretical basis for early recognition 
of depression and the application of neuro electrophysi-
ological markers in clinical practice.

Limitations and future research directions
Several limitations should be considered in future stud-
ies. First, the sample size was small, which may affect the 
stability performance in machine learning. Moreover, 
there may exist correlations between spectrum power 
and the severity of MDD. However, the correlations may 
not be significant as a result of the limited sample size. 
Therefore, although our results provide a strong refer-
ence direction for future studies, they need to be further 
verified through large samples. Second, although we use 
many measures to control overfitting, including cutting 
data to increase the sample size, cross-validation and fea-
ture selection techniques, our performance estimates are 
not completely unbiased. To obtain unbiased estimates of 

our model prediction performance, future studies should 
be based on independent datasets that were not used for 
model construction for validation. Third, because our 
study belonged to cross section study, we wouldn’t inves-
tigate the impact of LP-Alpha feature in MDD diagnosis. 
Therefore, we would explore the value of LP-Alpha in the 
diagnosis of MDD using longitude research in the future 
study. At last, in the future work, we should learn more 
the methods of machine learning like the study of Li et al 
[46] to improve the accuracy and explore the biomarker 
of MDD patients better.

Conclusions
In conclusion, we found that there were significant 
changes in EEG features, which indicated that there 
were potential abnormalities in EEG neural oscillations 
in first-episode and drug-naïve patients with MDD. This 
may reflect cortical excitation, inhibition, and overactiv-
ity imbalance in patients with drug-free MDD. After the 
machine learning algorithm, we hypothesized that the 
relative power of the alpha band in the left parietal region 
may be a potential neurophysiological marker of MDD. 
Moreover, it may be used as an indicator to assist in the 
clinical diagnosis of MDD.
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